Graphs' Counterfactual Explainability Landscape: current state and frontiers

giovanni stilo

(mario prado-romero, bardh prenkaj)

giovanni.stilo@univaq.it

Explainability and its importance

- Explainability is **crucial** in **sensitive** domains
 - It helps users and service providers make informed and reliable decisions [1]
- DNNs suffer from the **black-box** problem [2]
 - Can **not** be **used** in **finance** nor **healthcare** domains (critical domains)
 - White-boxes are preferred for decision-making purposes [3]

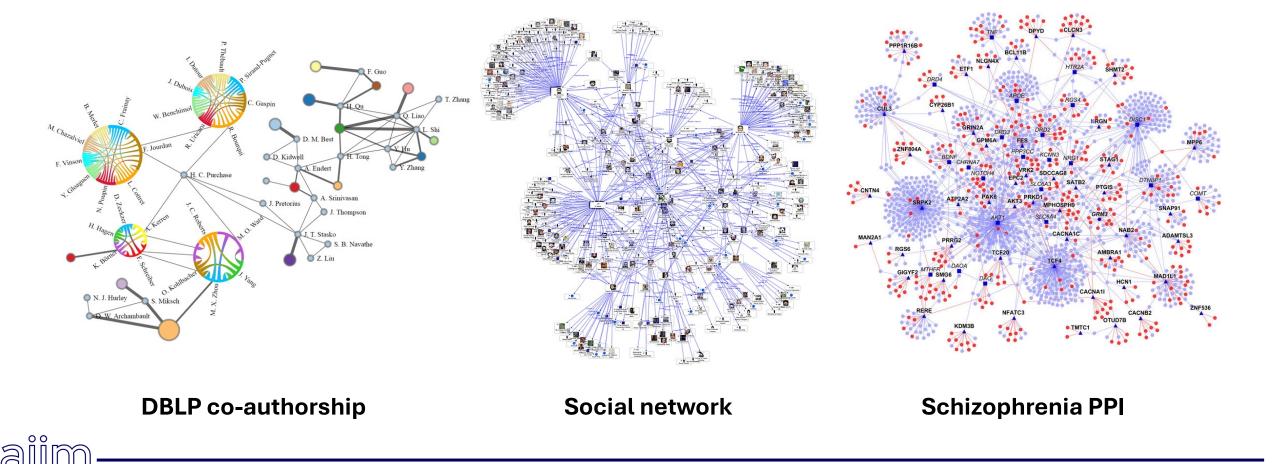
• Black-boxes are more performant than white-boxes [4-7]

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM computing surveys (CSUR) 51(5), 1–42 (2018)
 Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of explainable machine learning in cardiology. Canadian Journal of Cardiology (2021)
 Verenich, I., Dumas, M., La Rosa, M., Nguyen, H.: Predicting process performance: A white-box approach based on process models. Journal of Software: Evolution and Process 31(6), e2170 (2019)

- [4] Aragona, D., Podo, L., Prenkaj, B., Velardi, P.: Coronna: a deep sequential framework to predict epidemic spread. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing. pp. 10–17 (2021)
- [5] Feng, W., Tang, J., Liu, T.X.: Understanding dropouts in moocs. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 517–524 (2019)
- [6] Verma, H., Mandal, S., Gupta, A.: Temporal deep learning architecture for prediction of covid-19 cases in india. Expert Systems with Applications 195, 116611 (2022)
- [7] Prenkaj, B., Distante, D., Faralli, S., Velardi, P.: Hidden space deep sequential risk prediction on student trajectories. Future Generation Computer Systems 125, 532–543 (2021)

What's a graph?

A graph G = (V, E) consists of: a nodes set $V = \{v_1, \dots, v_n\}$ and an edges set $E = \{(v_i, v_j) | v_i, v_j \in V\}$



Challenges

There are three main challenges associated with processing graphs:

1. their topology is variable:

Thus it is hard to design a Neural Network that both **sufficiently expressive** and can cope with this **variation**;

2. graphs may be **enormous**:

a graph representing connections between users of a social network might have a millions nodes and billion of edges;

 there may only be a single monolithic graph available: so the usual protocol of training with many data examples and testing with new data is not always appropriate or possible.

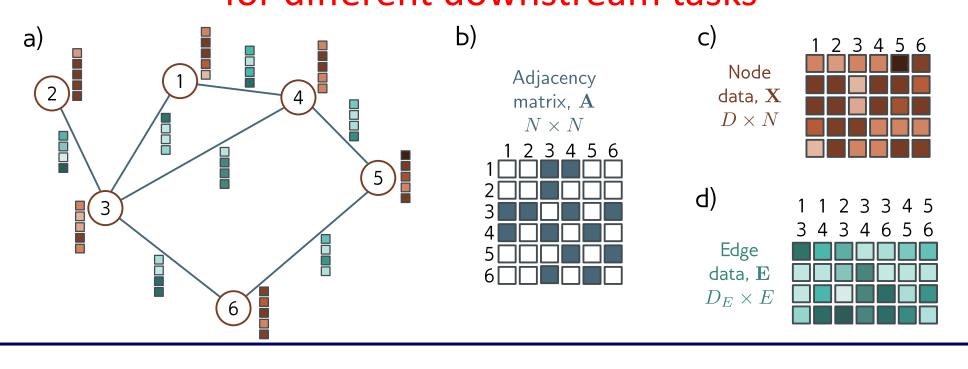
Graph Representation (learning)

More formally, a graph consists of a set of N nodes connected by a set of E edges.

The graph can be **encoded** by three matrices:

- adjacency matrix, *A* is an *N* × *N* matrix where entry (*m*, *n*) is set to one if there is an edge between nodes *m* and *n* and zero otherwise (symmetric for undirected graphs).
- nodes embeddings **X** is an $D \times N$ matrix where n^{th} node has an associated node embedding X^n of length D.
- edges embeddings E is an $D_E \times N$ matrix where e^{th} edge has an associated edge embedding E^e of length D_E .

We want to learn a (dense) representation **H** of the Graph usable for different downstream tasks

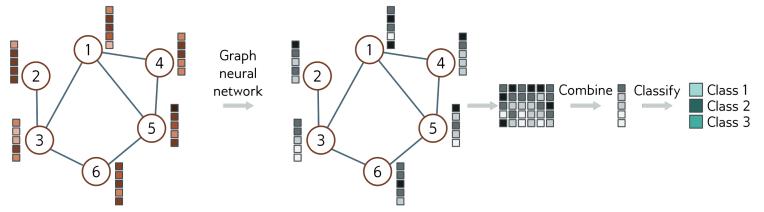


Graph-level Tasks

For example, we might want to **predict**:

- the temperature at which a molecule becomes liquid (a regression task);
- whether a molecule is poisonous to human beings or not (a classification task).

For graph-level tasks, the output **node embeddings are combined** (e.g., by averaging), and the resulting vector is **mapped** via a linear transformation or neural network to a **fixed-size vector**.



- for regression, the mismatch is computed using the least squares loss.
- for binary classification, the output is passed through a sigmoid function, and the mismatch is calculated using the binary cross-entropy loss.

$$Pr(y = 1 | X, A) = sig\left(\beta_k + \omega_k H_k \frac{1}{N}\right)$$

where the scalar β_k and $1 \times D$ vector $\boldsymbol{\omega}_k$ are learned parameters.

 $H_k \frac{1}{N}$ has the effect of summing together all the embeddings and subsequently dividing by N.

GNN

A graph neural network is a model that takes the node embeddings X and the adjacency matrix A as inputs and passes them through a series of K layers. The node embeddings are updated at each layer to create intermediate "hidden" representations $h_{k\neq K}$ before finally computing output embeddings h_K .

- At the beginning each column of the input node embeddings X just contains information about the **node itself**.
- At the end, each column of the model output h_K includes information about the node and its context within the graph.
- Typical GNN mechanisms are:
 - (random) walk based;
 - Message passing;
 - GCN;

Graph Classification e.g.

We want a **neural network** $f[X, A, \Phi]$ that **classifies** (predicts) **molecules** as toxic.

The adjacency matrix $A \in \mathbb{R}^{N \times N}$ derives from the molecular structure. The columns of O = P - Othe node embedding matrix $X \in \mathbb{R}^{118 \times N}$ are **one-hot vectors** indicating which of the 118 elements of the periodic table are present.

Note that the input node embeddings can be transformed to an arbitrary size D by the first weight matrix $\Omega_k \in \mathbb{R}^{D \times 118}$.

$$H_{1} = a[\boldsymbol{\beta}_{0}\mathbf{1}^{T} + \boldsymbol{\Omega}_{0}X \ (\boldsymbol{A} + \boldsymbol{I})]$$

$$H_{2} = a[\boldsymbol{\beta}_{1}\mathbf{1}^{T} + \boldsymbol{\Omega}_{1}H_{1}(\boldsymbol{A} + \boldsymbol{I})]$$

$$\vdots = \vdots$$

$$H_{k} = a[\boldsymbol{\beta}_{k-1}\mathbf{1}^{T} + \boldsymbol{\Omega}_{k-1}H_{k-1}(\boldsymbol{A} + \boldsymbol{I})]$$

$$f[\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{\Phi}] = sig\left[\boldsymbol{\beta}_{k} + \boldsymbol{\omega}_{k}H_{k}\frac{1}{N}\right]$$

`NH₂

 NH_2

OH

OHOH

онон

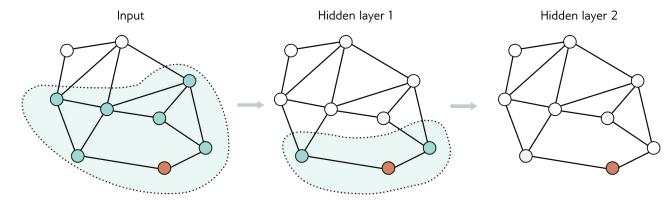
As intuition: H_k depends by $X(A + I)^k$, e.g H_3 : $X(A + I)^3 = X(A^3 + 3A^2 + 3A + I^3)$

Batches and Receptive Field

One way to form a batch is to **choose a random subset** of **labeled nodes** at each training step. Each node depends on its neighbors in the previous layer and so on. Do you remember:

 H_k depends by $X(A + I)^k$

In a GCN the size of the **receptive field** is equivalent to the *k*-hop neighborhood.



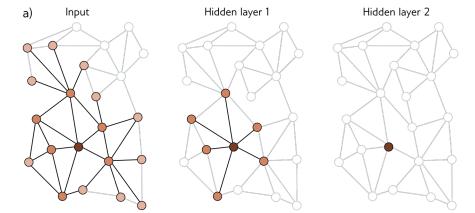
We can hence perform a gradient descent step using the graph that forms the union of the k-hop neighborhoods of the batch nodes; the remaining inputs do not contribute.

graph expansion problem

If there are **many layers** and the graph is **densely connected:***every input node may be in the receptive field of every output*.

In general we want that $k \ll diam(G)$

00



Counterfactual example

- We have a **social network** of different users
- User U posts an illicit advertisement that violates the Terms of Services (e.g., selling illegal goods online)
- A counterfactual explanation of U's account suspension would be:

"If the user had not violated the TOS, their account would not have been banned.

Graph Counterfactual Explainability (GCE)

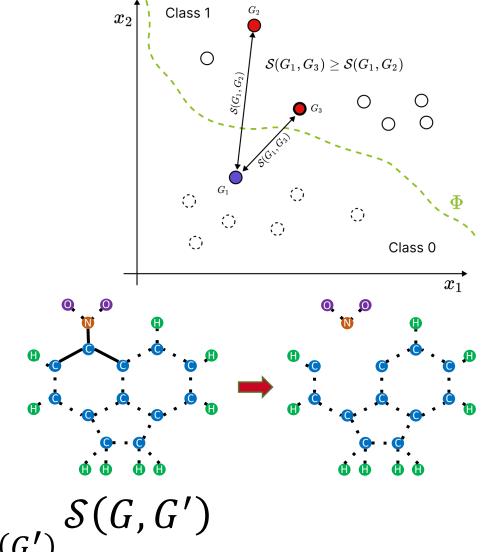
- Given:
 - A predictor (oracle) $\Phi: \mathcal{G} \to \{0,1\}$ that we want to explain
 - A graph G g or a set of graphs

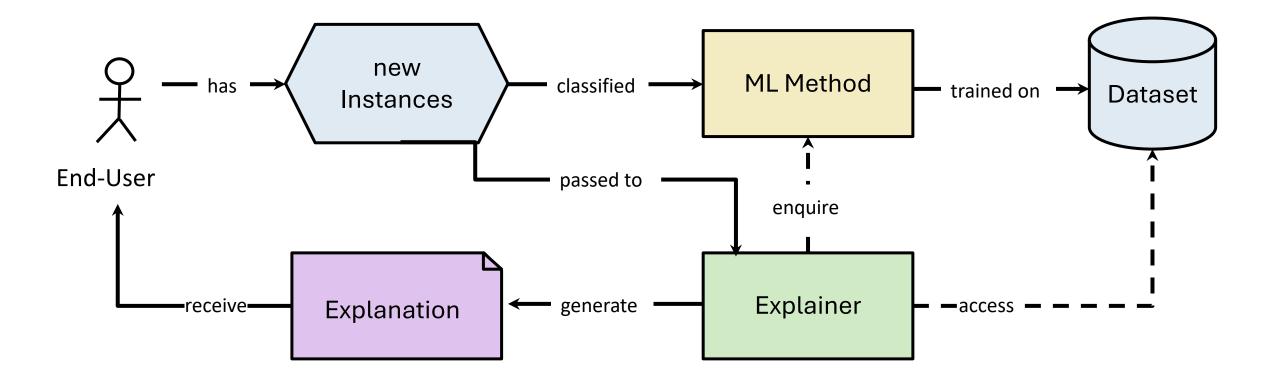
 $\mathcal{G} = \{G_1, \dots, G_n\}$

• A similarity function $S: G \times G \to \mathbb{R}$

• We want to find a **counterfactual** G'

such that
$$\mathcal{E}_{\Phi}(G) = \arg \max_{\substack{G' \in \mathcal{G}', G \neq G', \Phi(G) \neq \Phi(G')}} \mathcal{S}(G, G')$$

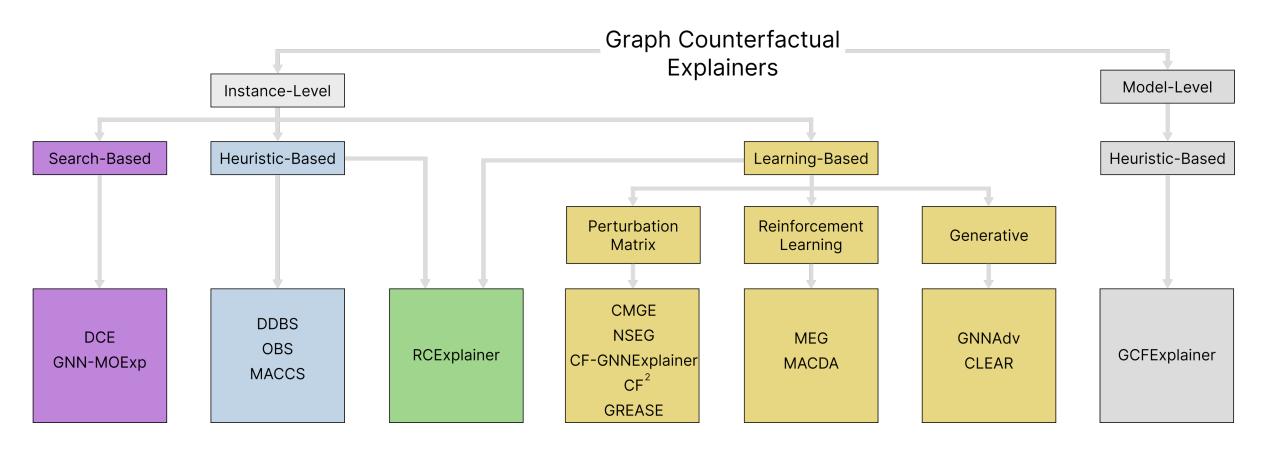




Based on

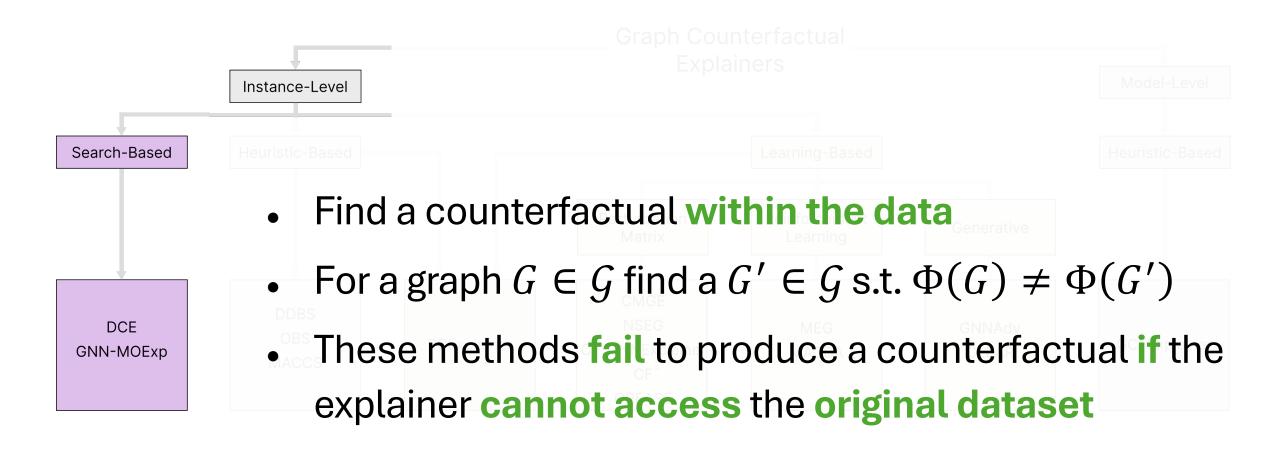
Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. 2023. *A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges.* ACM Computater Survey (September 2023). https://doi.org/10.1145/3618105

GCE methods Taxonomy

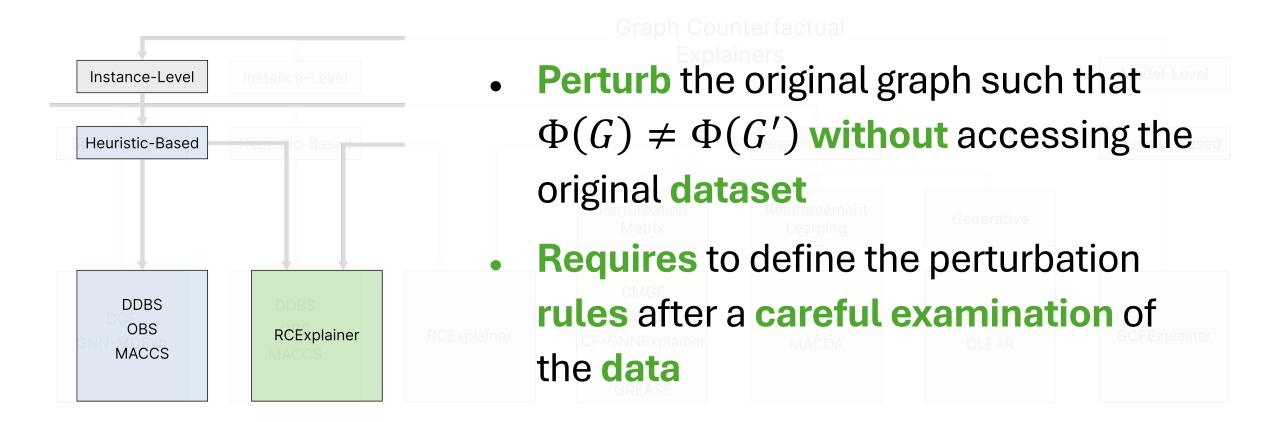


[8] Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. 2023. A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges. ACM Comput. Surv. (September 2023). https://doi.org/10.1145/3618105

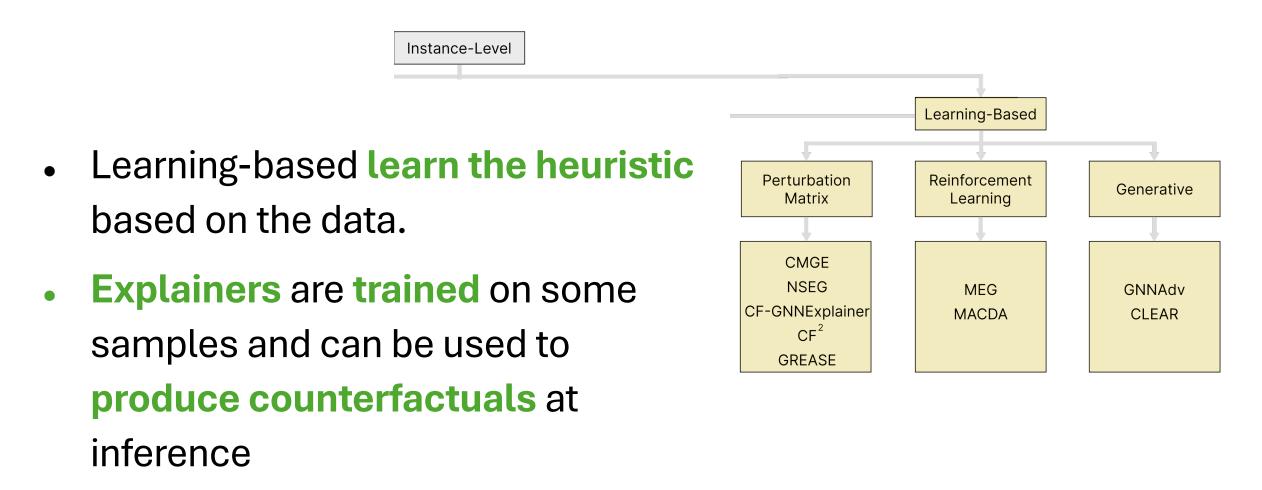
GCE Search-Based



GCE Heuristic-Based



GCE Learning-Based



Comparison between GCE Methods

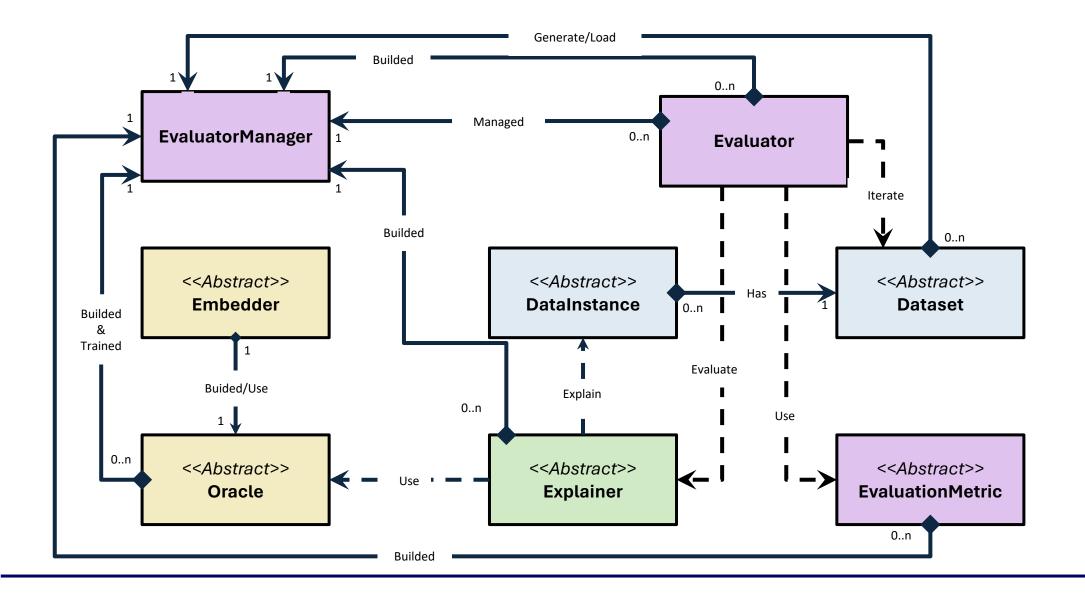
Method	Model Agnosticism	Model Access	Factual-Based Explanations	Minimal CE	Domain Agnosticism	Training Data Accessibility	Explanation Level	Classification Task	Generation Type	Approach
DDBS [1]	\checkmark			\checkmark	\checkmark	\checkmark	Instance	G	<i>E</i> (+, -)	Heuristic
OBS [1]	\checkmark	•		\checkmark	\checkmark		Instance	G	E(+, -)	Heuristic
RCExplainer [4]	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	Instance	G, V	E(-)	Heuristic & Learning
GNN-MOExp [35]	\checkmark	•	\checkmark		\checkmark		Instance	V	sub-graph	Search
MEG [52]	\checkmark	\checkmark		\checkmark		~	Instance	G	E(+, -), V(+, -)	Learning
GNNAdv [67]	\checkmark	\checkmark		\checkmark	\checkmark		Instance	G	E(+, -)	Learning
CMGE [80]		\checkmark	\checkmark			\checkmark	Instance	G	E(+, -), V(-)	Learning
NSEG [12]	\checkmark	\checkmark	\checkmark		\checkmark		Instance	G, V	E(-), F(*)	Learning
CF-GNNExplainer [38]	\checkmark	\checkmark		\checkmark	\checkmark		Instance	V	E(-)	Learning
CLEAR [40]	\checkmark	•		\checkmark	\checkmark	\checkmark	Instance	G	E(+, -), F(*)	Learning
MACDA [49]	\checkmark	•		\checkmark		~	Instance	(G_1, G_2)	E(+, -), V(+, -)	Learning
CF^{2} [68]	\checkmark	•	\checkmark		\checkmark		Instance	G, V	E(-), V(-), F(-)	Learning
MACCS [77]	\checkmark	•		\checkmark			Instance	G	E(+, -), V(+, -)	Heuristic
GCFExplainer [27]	\checkmark	•			\checkmark		Model	G	E(+, -), V(+, -)	Heuristic

GRETEL modules interaction

20

aiim.disim.univaq.it

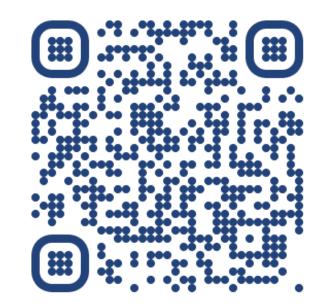
g



Empirical Explainers comparison

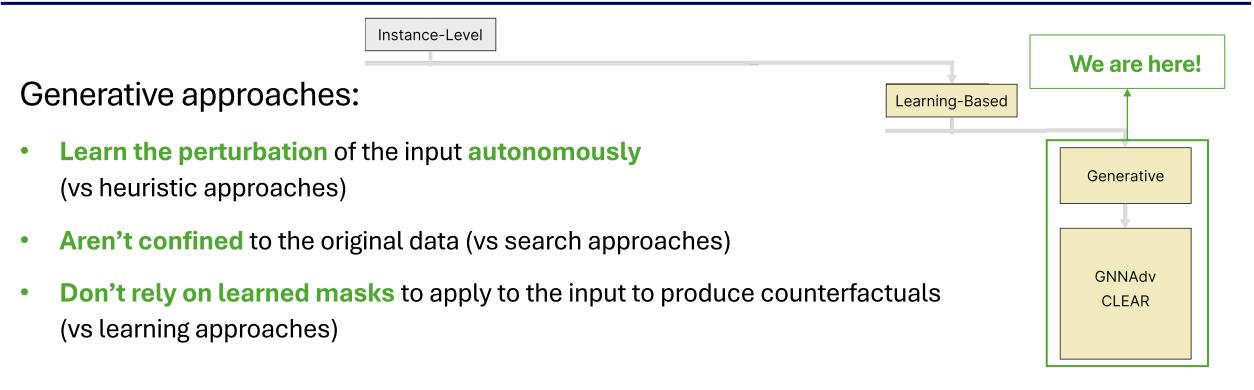
Dataset	Method	Runtime \downarrow	$\text{GED}\downarrow$	Oracle Calls↓	Correctness ↑	Sparsity \downarrow	Fidelity ↑	Oracle Accuracy ↑
Tree-Cycles	RAND@5	0.01 ± 0.003	92.18 ± 5.44	0.00 ± 0.00	0.55 ± 0.50	1.45 ± 0.09	0.55 ± 0.50	1.00 ± 0.00
	RAND@10	0.02 ± 0.006	123.74 ± 7.43	0.00 ± 0.00	0.51 ± 0.50	1.94 ± 0.12	0.51 ± 0.50	1.00 ± 0.00
	RAND@15	0.01 ± 0.004	147.93 ± 8.26	0.00 ± 0.00	0.58 ± 0.50	2.33 ± 0.13	0.58 ± 0.50	1.00 ± 0.00
	DCE	0.13 ± 0.00	50.36 ± 0.00	501.00 ± 0.00	1.00 ± 0.00	0.79 ± 0.00	1.00 ± 0.00	1.00 ± 0.00
	OBS	0.07 ± 0.01	57.31 ± 0.03	149.45 ± 21.13	0.96 ± 0.01	0.90 ± 0.00	0.96 ± 0.01	1.00 ± 0.00
	DDBS	8.87 ± 0.10	71.79 ± 0.24	1342.62 ± 11.95	0.59 ± 0.01	1.13 ± 0.00	0.59 ± 0.01	1.00 ± 0.00
	MACCS	-	-	-	-	-	-	-
	CLEAR	2.47 ± 0.08	79.76 ± 3.60	0.00 ± 0.00	0.53 ± 0.10	1.26 ± 0.06	0.53 ± 0.10	1.00 ± 0.00
	CF^2	0.41 ± 0.01	31.54 ± 0.12	0.00 ± 0.00	0.47 ± 0.10	0.50 ± 0.00	0.47 ± 0.10	1.00 ± 0.00
	MEG	272.11 ± 5.66	159.70 ± 1.34	0.00 ± 0.00	0.53 ± 0.00	2.51 ± 0.02	0.53 ± 0.00	1.00 ± 0.00
	RAND@5	1.45 ± 0.46	618.06 ± 8.27	0.00 ± 0.00	0.00 ± 0.00	0.80 ± 0.01	0.00 ± 0.00	0.79 ± 0.08
	RAND@10	2.76 ± 1.25	1152.93 ± 20.19	0.00 ± 0.00	0.00 ± 0.00	1.49 ± 0.02	0.00 ± 0.00	0.79 ± 0.08
	RAND@15	1.33 ± 0.39	1600.78 ± 18.22	0.00 ± 0.00	0.00 ± 0.00	2.08 ± 0.03	0.00 ± 0.00	0.79 ± 0.08
	DCE	0.09 ± 0.02	1011.69 ± 0.00	102.00 ± 0.00	1.00 ± 0.00	1.31 ± 0.00	$\textbf{0.54} \pm \textbf{0.00}$	0.79 ± 0.08
ASD	OBS	3.24 ± 1.13	9.89 ± 0.11	347.73 ± 15.11	1.00 ± 0.00	0.01 ± 0.00	$\textbf{0.54} \pm \textbf{0.00}$	0.79 ± 0.08
	DDBS	83.46 ± 34.04	11.79 ± 0.29	362.05 ± 14.56	1.00 ± 0.00	0.02 ± 0.00	$\textbf{0.54} \pm \textbf{0.00}$	0.79 ± 0.08
	MACCS	-	-	-	-	-	-	-
	CLEAR	0.45 ± 0.04	1739.60 ± 131.16	0.00 ± 0.00	0.47 ± 0.13	2.25 ± 0.17	0.25 ± 0.18	0.79 ± 0.08
	CF^2	0.69 ± 0.01	655.49 ± 2.87	0.00 ± 0.00	0.46 ± 0.09	0.85 ± 0.00	0.37 ± 0.15	0.79 ± 0.08
	MEG	×	×	×	×	×	×	×
	RAND@5	0.01 ± 0.03	30.98 ± 33.27	0.00 ± 0.00	0.85 ± 0.35	0.52 ± 0.23	0.62 ± 0.69	0.86 ± 0.02
	RAND@10	0.01 ± 0.03	52.98 ± 58.96	0.00 ± 0.00	0.86 ± 0.35	0.93 ± 0.41	0.65 ± 0.66	0.86 ± 0.02
	RAND@15	0.02 ± 0.12	82.97 ± 137.37	0.00 ± 0.00	0.85 ± 0.36	1.32 ± 0.70	0.61 ± 0.69	0.86 ± 0.02
	DCE	37.51 ± 5.21	27.92 ± 0.12	2040.00 ± 0.00	1.00 ± 0.00	0.59 ± 0.00	0.72 ± 0.00	0.86 ± 0.02
	OBS	2.92 ± 0.07	0.00 ± 0.00	314.61 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.61 ± 0.00	0.86 ± 0.02
	DDBS	×	×	×	×	×	×	×
	MACCS	31.35 ± 0.97	11.23 ± 0.08	1221.33 ± 0.22	0.40 ± 0.00	0.19 ± 0.00	0.23 ± 0.00	0.86 ± 0.02
	CLEAR@1	213.21 ± 5.64	27056.29 ± 9.69	0.00 ± 0.00	0.87 ± 0.02	91.89 ± 0.18	0.64 ± 0.03	0.86 ± 0.02
	CLEAR@5	214.80 ± 6.97	26711.57 ± 112.67	0.00 ± 0.00	0.85 ± 0.02	90.71 ± 0.37	0.62 ± 0.03	0.86 ± 0.02
	CLEAR@15		25986.66 ± 170.41	0.00 ± 0.00		88.20 ± 0.66	0.62 ± 0.06	0.86 ± 0.02
	CF^2	84.41 ± 49.06	25.72 ± 0.63	0.00 ± 0.00	0.85 ± 0.02	0.09 ± 0.00	0.63 ± 0.03	0.86 ± 0.02
	MEG	90.66 ± 29.51	269.35 ± 0.39	0.00 ± 0.00	0.51 ± 0.04	0.91 ± 0.00	0.32 ± 0.04	0.86 ± 0.02

GRETEL v1



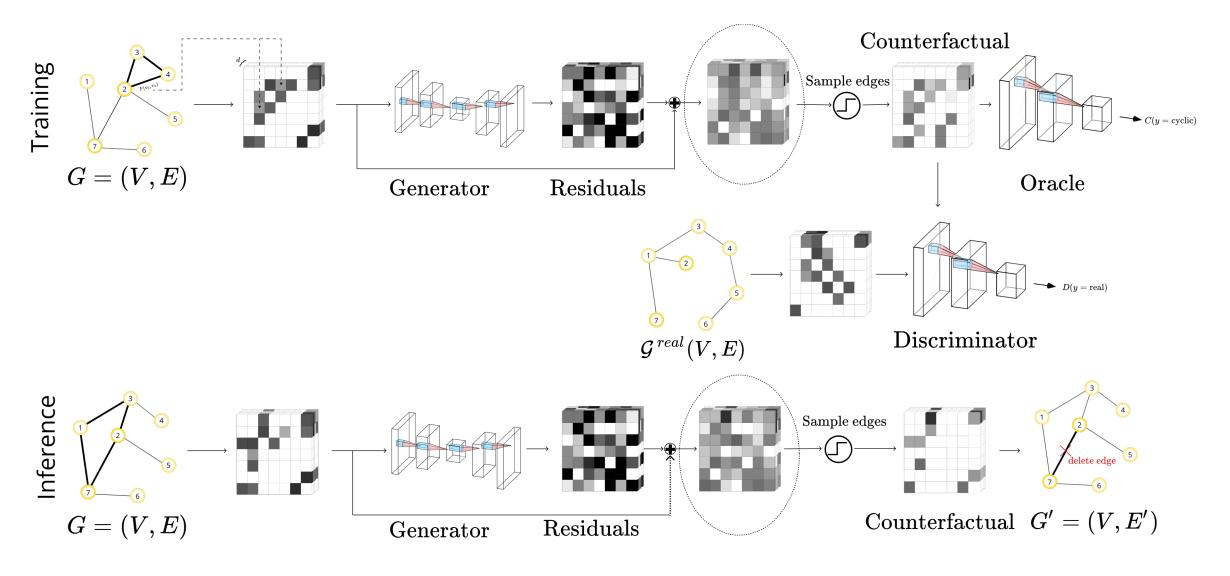
https://github.com/MarioTheOne/GRETEL

GCE Generative



- Generative strategies allow to produce multiple counterfactuals from a learned latent space
- don't need to access the oracle at explanation time

Architecture overview



$\mathcal{L}_{\text{OUR}} = \mathcal{L}_1(G, D) + \mathcal{L}_{\Phi}(G, c) + Reg(G, A)$

 c is the class to explain, and Reg(G, A) is a regularization term that controls the sparsity of the residuals (i.e., feature perturbations)

Generator/Discriminator Loss

$$\mathcal{L}_{OUR} = \mathcal{L}_1(G, D) + \mathcal{L}_{\Phi}(G, c) + Reg(G, A)$$
$$\mathcal{L}_1(G, A) = E_{A \sim p_{data}} \log D(A)$$
$$+ E_{A \sim p_{data}} \log \left(1 - D(A + G(A))\right)$$

 We modify the generator to take original input data instead of noise sampled from a normal distribution to directly generates
 Counterfactuals of the input instance

$$\mathcal{L}_{OUR} = \mathcal{L}_1(G, D) + \mathcal{L}_{\Phi}(G, c) + Reg(G, A)$$

$$\mathcal{L}_{\Phi}(G,c) = E_{A \sim p_{data}} \log \left(\mathbb{I} \left[\Phi \left(A + G(A) \right) \neq c \right] \right)$$

- Sampling instances from the data distribution could make G generate null residuals
- Hence, this loss component leverage the Oracle to steer the generator away from this behavior, making it produce plausible counterfactuals

Embedding the Oracle (2)

$$\mathcal{L}_{OUR} = \mathcal{L}_1(G, D) + \mathcal{L}_{\Phi}(G, c) + Reg(G, A)$$

$$\mathcal{L}_{\Phi}(G,c) = E_{A \sim p} \bigcirc g(\mathbb{I}[\Phi(A + G(A)) \neq c])$$

• Problem:

The oracle is a black-box and we cannot access its gradients to optimize this loss!

Final Loss

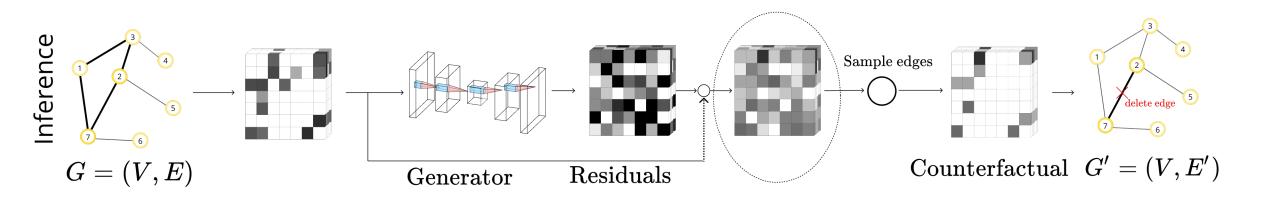
$$\mathcal{L}_{OUR} = \frac{\sum_{A \in \mathcal{A}} \left(\mathbb{1}[\Phi(A) = c] \cdot \log D(A) \right)}{\sum_{A \in \mathcal{A}} \mathbb{I}[\Phi(A) = c]}$$

$$+\frac{1}{|\mathcal{A}|}\sum_{A\in\mathcal{A}}\log\left(1-D(A+G(A))\right)+Reg(G,A)$$

- Solution:
- We weight the first term of the loss by the prediction scores of the oracle;
- $\mathbb{I}[\Phi(A) = c]$ is an **indicator function** that returns 1 if Φ classify the instance in the class c; while \mathcal{A} is the set of all adjacency matrices corresponding to $G \in \mathcal{G}$

G-CounteRGAN Inference

- Counterfactuals generation are made by sampling edges by the edge probabilities learned in the latent space;
- We keep the node order to avoid CLEAR's graph matching problem (NP-hard)



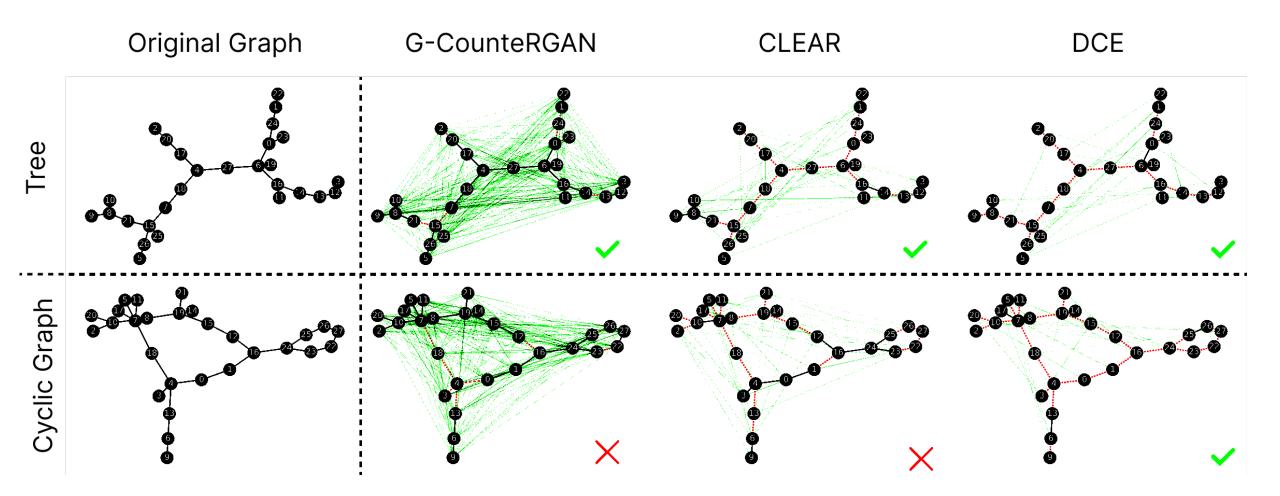
[9] Ma, J., Guo, R., Mishra, S., Zhang, A., Li, J.: CLEAR: generative counterfactual explanations on graphs. In: NeurIPS (2022)

Performances on TreeCycles@n

Dataset	Method	$\operatorname{Runtime} \downarrow$	$\operatorname{GED} \downarrow$	Oracle calls ↓	, Correctness \uparrow	Sparsity	\downarrow Fidelity \uparrow	Oracle accuracy \uparrow
Tree-Cycles@28	DCE *	0.125	42.570	501.000	1.000	0.766	1.000	1.000
	OBS *	0.067	49.444	$\underline{139.545}$	0.965	0.889	<u>0.965</u>	1.000
	iRand *	0.218	0.588	484.599	0.569	0.011	0.569	1.000
Cy	CF^2 †	0.581	27.566	0.000	0.496	0.496	0.496	1.000
-ee	CLEAR ‡	22.121	64.006	0.000	0.504	1.152	0.504	1.000
Ë	G-CounteRGAN ‡	4.120	271.822	0.000	0.524	4.893	0.524	1.000
32	DCE *	0.143	50.112	501.000	1.000	0.788	1.000	1.000
S. S.	OBS *	0.143	57.542	159.260	0.964	0.905	0.964	1.000
cle	iRand *	0.339	0.590	627.342	0.575	0.009	0.575	1.000
Q,	CF^2 †	0.412	31.542	0.000	0.474	0.496	0.474	1.000
Tree-Cycles@32	CLEAR ‡	30.227	80.351	0.000	0.526	1.265	0.526	1.000
Ę.	G-CounteRGAN ‡	<u>0.298</u>	359.698	0.000	0.504	5.659	0.504	1.000
Tree-Cycles@48	DCE *	0.214	82.000	501.000	1.000	0.858	1.000	1.000
	OBS *	0.147	89.268	$\underline{237.678}$	0.935	0.934	0.935	1.000
	iRand *	1.627	0.533	1594.374	0.527	0.006	0.527	1.000
	CF^2 †	3.771	47.568	0.000	0.494	0.498	0.494	1.000
	CLEAR ‡	31.081	171.983	0.000	0.506	1.800	0.506	1.000
	G-CounteRGAN ‡	6.612	1121.550	0.000	0.506	117.737	0.506	1.000

† symbolizes learning-based approaches; ‡ indicates generative approaches; * depicts search (heuristic) methods. Bold values are the best overall; underlined are second-best on average per dataset

Anecdotal Counterfactual Visualization



Counterfactual produced by G-CounteRGAN, CLEAR, and the optimistic baseline DCE on Tree-Cycles@28. As in the original graph, green edges are additions, red ones are removals, and **black** ones are maintained. An × denotes an invalid counterfactual, and a \checkmark is valid.

Anecdotal Counterfactual Visualization

202

Counterfactual produced by CF², CLEAR, and G-CounteRGAN on Tree-Cycles@28.

Conclusion

Q: "Can generative approaches compete with search/heuristic baselines in producing valid counterfactuals in synthetic datasets?" A: Not yet. But ...

- They are crucial to **produce multiple counterfactuals** by sampling their learned latent spaces
- They can learn the input perturbation strategy differently from heuristic-based approaches
- They have the **potential** to become akin to a **Swiss-knife in GCE**

Thanks for your attention!

Bibliography

[1] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM computing surveys (CSUR) 51(5), 1–42 (2018)

[2] Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of explainable machine learning in cardiology. Canadian Journal of Cardiology (2021)

[3] Verenich, I., Dumas, M., La Rosa, M., Nguyen, H.: Predicting process performance: A white-box approach based on process models. Journal of Software: Evolution and Process 31(6), e2170 (2019)

[4] Aragona, D., Podo, L., Prenkaj, B., Velardi, P.: Coronna: a deep sequential framework to predict epidemic spread. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing. pp. 10–17 (2021)

[5] Feng, W., Tang, J., Liu, T.X.: Understanding dropouts in moocs. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 517–524 (2019)

[6] Verma, H., Mandal, S., Gupta, A.: Temporal deep learning architecture for prediction of covid-19 cases in india. Expert Systems with Applications 195, 116611 (2022)

[7] Prenkaj, B., Distante, D., Faralli, S., Velardi, P.: Hidden space deep sequential risk prediction on student trajectories. Future Generation Computer Systems 125, 532–543 (2021)

[8] Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. 2023. A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges. ACM Comput. Surv. Just Accepted (September 2023). https://doi.org/10.1145/3618105

[9] Ma, J., Guo, R., Mishra, S., Zhang, A., Li, J.: CLEAR: generative counterfactual explanations on graphs. In: NeurIPS (2022)

