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ROADMAP

e Part I: Graphs fundamentals (20 mins) [STILO]
o Wide-spread adoption of GNNs in graph prediction problems
o How do GNNs work?

o Applications of different types of GNNs based on ACM survey

2

e Part ll: eXplainable Al (25 mins) [PRENKAJ]

T
o lIssues of black-box models and the importance of interpretability E y &
o What is a factual explanation? U
[ . [

o (Briefly) Revisiting GNNExplaner and GraphLIME

e Part lll: Counterfactual Explanations in Graphs (60 mins) [PRADO] N
o What is a graph counterfactual explanation (GCE)?
o GCE taxonomy description and method classification E
m Model-level explainers =
m Instance-level explainers
m Search-based
m Heuristic-based

m Learning-based [PRENKAIJ]
o Benchmarking datasets and evaluation metrics (pro et contra) [PRENKAJ]

https://dl.acm.org/doi/abs/10.1145/3618105
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EEEEE
PART I
GRAPHS FUNDAMENTALS

AND THEIR NEURAL NETWORK

by Giovanni Stilo
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WHAT IS A GRAPH?
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CHALLENGES WITH GRAPHS

There are three main challenges associated with processing graphs:

e Variable topology: hard to design an NN that is sufficiently expressive and

can cope with this variation

e Huge graphs: we can have millions of nodes and billions of edges (see
Twitter)

e Single monolithic graph: the usual protocol of training with many data

examples and testing with new data is not always appropriate or possible

A alimlab.org




GRAPH REPRESENTATION

adjacency matrix, 4 is N x N ;
node embeddings, XisD x N,
edges embeddings, EisD, x N

b)

Adjacency
matrix, A
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ADJACENCY MATRIX PROPERTIES

_0,]111119._
COCO —~C r~
Crd =N O —
[ I B I R o I I
— NN~ O
o~ NN~ - O -
=~ NN~ O~

_2]11.\..400_0.

«
cCoocOoO~NHOO
cococo~0O
cCoocOo—~O ~ —
H OO ~O OO

A’ contains the number of unigue walks of length / from node m to node n
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NODES PERMUTATION

Node indexing in graphs is arbitrary
Permuting the node indices results in a permutation of the columns of the node data matrix X and a

permutation of both the rows and columns of the adjacency matrix A.
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GRAPH LEARNING

We want to learn a (dense) representation H of
the graph usable for different downstream tasks

A graph neural network is a model that takes:

e the node embeddings X and the adjacency matrix A as inputs and
passes them through a series of k layers.

e the node embeddings are updated at each layer to create

INntermediate "hidden” representations h before finally computing
output embeddings h,.

A alimlab.org 1o




GRAPH CLASSIHICATION TASKS

For example, we might want to predict:
« the temperature at which a molecule becomes liquid (a regression task);
« whether a molecule is poisonous to human beings or not (a classification task).

For graph-level tasks, the output node embeddings are combined (e.g., by averaging), and the
resulting vector is mapped via a linear transformation or neural network to a fixed-size vector.

Graph
neural
network SEEmEE Combine B Classify []Class 1
SEcooos 0 | Class 2
ROO000 O [ Class 3
_ 1
Pr(y=1|X,A) = sig (Bk + w; H;, N)

/ A alimlab.org 1




NODE CLASSIfICATION TASKS

For example, in an PPl network we might want to predict:

- the probability that a given node might be attacked/being
part of a certain disease (classification) as it is shown for
COVIDI9 (red) - PPl on the right.

The network assigns one or more label (classification) or values
(regression) to each node of the graph, using both the graph structure
and learned node embeddings.

|

L]

o Classify node

O from node
embedding

O

0

- Graph

a neural
network
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EDGE CLASSIfiICATION TASKS

For example, in the social network setting, the network might predict whether:
- two people know each other and suggest that they connect if that is the case.

The network assigns one or more label (classification) or values (regression) to each
edges of the graph, using both the graph structure and learned node embeddings.

O  Classify edge

. |
O from adjacent
embeddings

Graph
neural
network
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GNNS

Spatial-based convolutional graph neural networks (GCN) are convolutional
network that update each node embeddings by aggregating information from

nearby nodes using the original graph structure.

Each layer of the GCN is a function F[:] with parameters ® that takes the node
embeddings and adjacency matrix and outputs new node embeddings:

H, = F[X,A, ¢l
F[Hl: A' ¢1]
F[’:’Z: A' ¢2]

R
1

HK - F[HK—]J A: ¢K—1]
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PARAMETER SHARING

e Likewise CNN, we want the same parameters at every node: reducing the number of
parameters and sharing what the network learns at each node across the entire

graph.
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e Each neighbor sends a message to the variable of interest, which aggregates
these messages to form the update.

In images, the neighbors were pixels from a fixed-size square region around the

current position, so the spatial relationships at each position are the same.

no consistent relationships.

e In a graph, each node may have a different number of neighbors, and there are
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GCN ()

each node at layer k, we aggregate information from neighboring nodes by e.g. summing

their node embeddings: (m)
agglnkl= ) HS

mene|n]

linear transformation Q) to the embedding H of the current node and to his aggregated
value, we add a bias term B, and pass the result through a nonlinear activation function
al:], which is applied independently to every member of its vector argument:

HY,=a !ﬂk + Q- HY + 0 agg[n,k]]

the n' column of A contains ones at the positions of neighbors. If post-multiply the
embeddings by A the n®" column is agg[n,k]:

Hy.1 = a[Brl" + QuHy + Q H Al = a[Br1" + @ H (A +1)]

A
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GCGN (2)

Hy.q1 = a[B1" + Q H (A + )]
This layer satisfies the design considerations:
e itis equivariant to permutations of the node indices

H,..P = F|H,P, PTAP, bl = a[ﬂleP + ﬂkaP(PTAP +1)]
e can cope with any number of neighbors due to the agg[n,k] function;
e exploits the graph structure to provide a relational inductive bias,
e and shares parameters throughout the graph i.e. Q.

a) _ ~xD) b) ,--h(ll)

™ = a B, +21x{")+ s aggln] b = 2 B, + i) + ¥iaggln]
A aiimlab.org 17




GRAPH CLASSIfICATION (REV.)

e We want a neural network f[X,A®] that classifies (predicts) I
molecules as toxic or harmless. OH |\ NH,

structure.

e The adjacency matrix A € RA(NxN) derives from the molecular O—P—O—@'

e The columns of the node embedding matrix are one-hot vectors © OHOH  NH,

indicating which of the 118 elements of the periodic table are A /)'N
present. 0=P—0— NNy
H, = a[Bo1” + QX (A+D)] o
H, = a[B;1" + Q;H (A + D] OHOH

H, = a[By_11" + Qk—lHk—l(Ail' I]
f[X, A, &] = sig [Bk + @ H, N]

XA+D*egH;: X(A+1)3 = X(A3 +34%2+34+ 13
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GNNS (BRIELLY)

Input Hidden layer 1 Hidden layer 2

H* depends on X(A + I)°

graph expansion problem
If there are many layers and the graph is densely connected:
every input node may be in the receptive field of every output.
In general we want that k << diam(Q)

alimlab.org 19



PART Il
EXPLAINABLE ARTI{iCIAL

INTELLIGENCE

by Bardh Prenkaj

first part of the slides based on: CSEP 590B: Explainable Al from University of Washington




WHAT’S GOING ON TODAY IN ML?

Lack of transparency

e |dentify key factors in underlying
processes x

e Cenerate scientific hypotheses

A
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WHY ACCURATE PREDICTIONS ARE IMPORTANT?

(e

Cancer patient Features ¢
N Demographic data . 5131 patient
| ey
| I
7/<< Clinical data wz y
\ 4
\ .
Genotype data .
JL | Ld
Gene expression data
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WHY ACCURATE PREDICTIONS ARE IMPORTANT?

Cancer patient Features ¢
AN Demographic data . 331 @
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Gene expression data
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WHY ACCURATE PREDICTIONS ARE IMPORTANT?

Cancer patient

Features ¢

Demographic data . 331

Clinical data 332 y
? 0

Genotype data . .
| | Ld

Gene expression data
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EXPLAINABILITY

e \Which features contributed to a certain prediction and how?

e How to learn or select features that are most interpretable or
Informative?

e How to make biological or clinical sense of a black-box model?

A alimlab.org 25




TYPES OF EXPLAINABILITY

Feature importance explanations )
e Removal-based explanations . Some sort of factual
e Shapley values explanations
e Propagation-based explanations
y

Inherently interpretable models

Counterfactual explanations

A
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FACTUAL EXPLANATIONS ON GRAPHS

alimlab.org 27



FACTUAL EXPLANATIONS ON GRAPHS

e Find those edges whose subgraph induced on them has the
same label as the whole graph (desideratum #1)

e This subgraph should be minimal (desideratum #2)
e \When you remove this subgraph, the remainder should have

the opposite class (corollary #1) — this gives sprout to
factual-based counterfactual explainers

A
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REVISITING
GNNEXPLAINER' AND
GRAPHLIME?

based on (1) Ying et al. “GNNExplainer: Generating Explanations for Graph Neural Networks”, NeurlPS 2019
& (2) Huang et al. “GraphLIME:Local Interpretable Model Explanations for Graph Neural Networks”, TKDE 2023



GNNEXPLAINER (INTRO)

GNNExplainer: Generating Explanations
for Graph Neural Networks

Rex Ying!  Dylan Bourgeois’*  Jiaxuan You! = Marinka Zitnik! ~ Jure Leskovec!

TDepartment of Computer Science, Stanford University
‘Robust.Al
{rexying, dtsbourg, jiaxuan, marinka, jure}@cs.stanford.edu

Abstract

Graph Neural Networks (GNNs) are a powerful tool for machine learning on
graphs. GNNs combine node feature information with the graph structure by
recursively passing neural messages along edges of the input graph. However, in-
corporating both graph structure and feature information leads to complex models
and explaining predictions made by GNNs remains unsolved. Here we propose
GNNEXPLAINER, the first general, model-agnostic approach for providing inter-
pretable explanations for predictions of any GNN-based model on any graph-based
machine learning task. Given an instance, GNNEXPLAINER identifies a compact
subgraph structure and a small subset of node features that have a crucial role in
GNN’s prediction. Further, GNNEXPLAINER can generate consistent and concise
explanations for an entire class of instances. We formulate GNNEXPLAINER as an
optimization task that maximizes the mutual information between a GNN’s predic-
tion and distribution of possible subgraph structures. Experiments on synthetic and
real-world graphs show that our approach can identify important graph structures
as well as node features, and outperforms alternative baseline approaches by up to
43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits,

11 I from the ability to visualize semantically relevant structures to interpretability, to
n Od e C | a SS I fl C a t I O n giving insights into errors of faulty GNNs.
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GNNEXPLAINER (INTRO)

No

No
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GNNEXPLAINER (INTRO)

NoO
Ves Yes _
No E(@ ® }6) = NO
?
Yes
No =
No

A
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i computational
' graph for a
. 2-layer GNN
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GNNEXPLAINER (COMP. GRAPH)

out of scope since
L it's too far away
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GNNEXPLAINER (REMOVE NODES)

NO
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GNNEXPLAINER (REMOVE NODES)

NO
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GNNEXPLAINER (PROBABILITY DISTRIBUTIONS)

e, mb

NoO Yes
Yes @ I .
OOO
No Yes
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GNNEXPLAINER (FORMAL)

max MI(Y,(Gs, Xs)) = H(Y) - HY |G = Gs, X = X5)
S

Human-interpretable intuition

Find a subgraph that maintains as much information
as possible compared to the full graph

alimlab.org ss



GNNEXPLAINER (EXPLANATION EXAMPLE)

alimlab.org 39



GRAPHLIME IN A NUTSHELL

e GraphLIME builds local interpretable models for specific nodes in the graph

e |t uses the Hilbert-Schmidt Independence Criterion (HSIC) Lasso for feature
selection.

e GraphLIME operates locally within the subgraph of the node being explained.

HSIC: M. Yamada et al, “Ultra high-dimensional nonlinear feature selection for big biological
data,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 7, pp. 1352-1365, Jul. 2018.

A
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SELECTING THE NODE’S NEIGHBORHOOD

e For atarget node, GraphLIME selects its N-hop neighborhood (where N is the
number of GNN layers)

e This neighborhood captures relevant structural information around the node

alimlab.org 4



BUILDING THE LOCAL MODEL

e GraphLIME learns a nonlinear interpretable model within the selected
subgraph

e This model explains the node’s prediction behavior

e GCraphLIME computes the K most representative features using HSIC
Lasso

A alimlab.org 42




FEATURE IMPORTANCE WITH HSIC LASSO

e HSIC Lasso is a nonlinear method for selecting important features

e It balances the trade-off between model complexity and
interpretability

e HSIC Lasso identifies the most influential features for the node’s
prediction

A
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PART 111
COUNTERFACTUAL

EXPLANATIONS IN GRAPHS

by Mario A. Prado-Romero

Based on:

Prado-Romero et al. “A survey on graph counterfactual explanations: definitions, methods, evaluation”, ACM CSUR 2023



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=JIidltYAAAAJ&sortby=pubdate&citation_for_view=JIidltYAAAAJ:MXK_kJrjxJIC

GRAPH COUNTERFACTUALS?

/ N\
Cephalexin Amoxicillin
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GCE METHODS

Graph Counterfactual

Explainers
Instance-Level Model-Level
_ Heuristic-Based Learning-Based Heuristic-Based
Perturbation Reinforcement :
Matrix Learning el
e CMGE
OBS _ NSEG MEG GNNAdv .

RCExplainer CF-GNNExplainer MACDA CLEAR GCFExplainer

MACCS CF?
GREASE
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GLOBAL COUNTERFACTUAL
EXPLAINERS

Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. 2023. Global Counterfactual Explainer for Graph Neural Networks. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining (WSDM '23). Association for Computing Machinery, New York, NY, USA, 141-149. https://doi.org/10.1145/3539597.3570376



GCFEXPLAINER

e The input is a set of instances to explain G

Model-Level

e The output is a set of counterfactual instances G that are

considered an explanation of the input set Heuristic-Based

e Coverage: the proportion of graphs in G that have a close
counterfactual in © under a given distance threshold 6:

coverage(C) = |{G € G I{rcneiél}{d(G,C)} < 6}|/|G]| GCFExplainer

A
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SEARCH SPACE

® The search space of counterfactual graphs = graphs in the same
domain as the input within a distance of 9

e The number of potential graphs within 0 increases exponentially
since the space of graph edits is combinatorial

e Use an edit map to organize these graphs as a meta-graph ®

A
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SEARCH SPACE (ILLUSTRATIVE)

./‘7 ;f' e
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VERTEX-REINFORCED RANDOM WALK

® |everage vertex-reinforced random walks (VRRW) on the
edit map ®

e VRRW converges to a set of nodes that are important and
diverse, which will form a small set of counterfactual
candidates for further processing

alimlab.org s+



VERTEX-REINFORCED RANDOM WALK

"o

\
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ITERATIVE SUMMARY COMPUTATION

Create a summary of counterfactual graphs as the recourse
representation by iteratively adding the best candidate based
on the maximal gain of the coverage

alimlab.org ss3



BASELINE GRAPH
COUNTERFACTUAL
EXPLAINER

L. Faber, A. K. Moghaddam, and R. Wattenhofer. 2020. Contrastive Graph Neural Network Explanation. In Proc. of the 37th Graph Repr. Learning and Beyond Workshop at ICML
2020. Int. Conf. on Machine Learning, 28



SEARCH-BASED GCE METHODS

Instance-Level

Search-Based

DCE
GNN-MOExp

e Find a counterfactual within the data

e Foragraph GeGgfinda G eGs.t. ®(G) # P(G)

e These methods fail to produce a

counterfactual if the explainer cannot access

the original dataset

A
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DCE (DISTRIBUTION COMPLAINT EXPLANATIONS)

X9 S(G1,Gs3) > S(G1,G2)

G*=arg min d(G,G")
G'€G,9(G)£®(G)

alimlab.org se



QUESTIONS ON DCE

e Does It guarantee to always produce valid counterfactuals?

e Does it guarantee to produce the closest counterfactual to the

INput we want to explain?

e Are counterfactuals within the data manifold?

A
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HEURISTIC-BASED
EXPLAINERS

Abrate C, Bonchi F. Counterfactual graphs for explainable classification of brain networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining 2021 Aug 14 (pp. 2495-2504).

Wellawatte GP, Gandhi HA, Seshadri A, White AD. A Perspective on Explanations of Molecular Prediction Models. Journal of Chemical Theory and
Computation. 2023 Mar 27;19(8):2149-60.



HEURISTIC-BASED GCE METHODS

Instance-Level

Heuristic-Based

DDBS
OBS
MACCS

RCExplainer

e Perturb the original graph such that ®(G) # ®(G))

without accessing the original dataset

e Requires to define the perturbation rules after a

careful examination of the data

alimlab.org s



OBLIVIOUS BIDIRECTIONAL SEARCH (OBS)

‘\6 @ 00\0

Cyclic Step 1: Step 2:
Graph Find a Reduce distance between
Counterfactual original graph and
counterfactual
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MACCS

Uses SMILES representations of molecules

ﬁjﬁh

CC1=C(N2C(C(C2=0)NC(=0)C(C3=CC=CC=C3)N)SC1)C(=0)O

alimlab.org s



LEARNING-BASED
EXPLAINERS

D. Numeroso and D. Bacciu. 2021. Meg: Generating molecular counterfactual explanations for deep graph networks. In 2021 Int. Joint Conf. on Neural Networks. IEEE, 1-8

Wellawatte GP, Gandhi HA, Seshadri A, White AD. A Perspective on Explanations of Molecular Prediction Models. Journal of Chemical Theory and Computation. 2023 Mar
27;19(8):2149-60.

Tan, J.,, Geng, S, Fu, Z, Ge, Y, Xu, S, Li, Y. and Zhang, Y., 2022, April. Learning and evaluating graph neural network explanations based on counterfactual and factual reasoning.
In Proceedings of the ACM Web Conference 2022 (pp. 1018-1027).

Ma, J,, Guo, R,, Mishra, S., Zhang, A. and Li, J., 2022. Clear: Generative counterfactual explanations on graphs. Advances in Neural Information Processing Systems, 35,
pPpP.25895-25907.

Prado-Romero MA, Prenkaj B, Stilo G. Robust Stochastic Graph Generator for Counterfactual Explanations. arXiv preprint arXiv:2312.11747. 2023 Dec 18.



LEARNING-BASED GCE METHODS

Graph Counterfactual
Explainers

Instance-Level

Learning-Based
e Learn the heuristic based on the data
P bati Reinf :
e Explainers are trained on some samples
CMGE
and can be used to produce NSEG MEG GNNAdv
CF-GNNExplainer MACDA CLEAR
counterfactuals at inference CF
GREASE
A alimlab.org ss3




MEG (ARCHITECTURE)

d(G)

§~

Explainerg - ~X prior domain
knowledge
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COUNTERFACTUAL AND FACTUAL (CF?)

these edges, if
removed,
create the

counterfactual

(b) Counterfactual reasoning

(c) CF?%: Counterfactual and factual reasoning

-\
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CF?* (NECESSITY & SUFAICIENCY)

An explanation needs to be necessary and sufficient

o

Counterfactual Factual

Reasoning Reasoning
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CF? (SUFfICIENCY)

Factual Reasoning

.....
. " "o

®(AxM; X*F) Y

\L — = Tt
/
7
7 ..
s
Masked Masked node feature
adjacency matrix vectors

Both masks are learned by the explainer

A
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CEF> (NECESSITY)

Counterfactual Reasoning

P(A— AxM,X — X*%F) # y

Why do we subtract the masked adjacency matrix?

A
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CEF* (RELAXED OPTIMIZATION)

Ly =ReLU(y+ P(®(A* M, X x F) = —y) — S¢(M, F))

L.=ReLU(y—P(®(A—AxM,X —X*xF)=—y)—S.(M, F))

" EE g
- " L}
. " .

.
L]
--------

Complexity
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CLEAR

First work to treat causality when producing counterfactuals

# of
collaborations

application /

N

(Counterfactual GEF

(Counterfactual G 5

ol

Causality

2,

Image taken from: Ma J, Guo R, Mishra S, Zhang A, Li J. Clear: Generative counterfactual explanations on graphs. Advances in Neural Information Processing Systems. 2022 Dec 6;35:25895-907.

A
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CLEAR

L=Eg|dGG)+al(B(G), @(G))] + KL (é(z G, ~®(G)):|| P(Z | G, ﬂ@(G)))

L 4
*

.
» .
-------

Q is learned by the

encoder

alimlab.org 7



CLEAR

s mm x
= " Ll
. " .

L=Eg|dGG)+al(B(G), @(G))] + KL (:é(Z G, ﬁ<I>(G55‘-II P(Z |G, ﬂ<I>(G)))

L 4
*

.
L .
-------

Encoder

P(Z |G,~®(G)) =N (uz (—2(G)), diag(o? (ﬂ‘I’(G))))

The Gaussian distribution as prior to enforce the learned distribution Q to be close to the

prior by minimizing their KL divergence
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CLEAR

L =Eq|d(G,G") + ot (B(G"), ﬂ<I>(G))] + KL (Q(@JG, ~2(G)) || P(Z | G, ﬂ‘P(G)))

P K i i
KLJVJ Q) . Zissampled via the
reparameterization
PY/Q >
b — Decoder pmill trick
*Sarnphng ----
-®((

Kingma DP, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. 2013 Dec 20.

A

alimlab.org 73




CLEAR

e One can generate multiple counterfactuals from sampling multiple Z
e The decoder produces a probabilistic graph where edges have weights R},

e Binarize the graph according to the Bernoulli distribution

KL(P Il Q)
PYQ

3 D,

¥ Sampling

7, OOIraom

~3(G)?
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CLEAR

—~

d(G,G") = gi (A Bernoulli( A \)3 +Hdx (X, X))
T \\:/_ ————————— - \\\‘r"’//
/ |
w

distance between the original adjacency  distance between the original node

matrix and the generated one features and the generated ones

alimlab.org
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RSGG-CE

e Cornerstone paper in the debate “Are generative counterfactual

explanation approaches worth it?”

e Besides CLEAR, all other explainers are discriminative

e Uses Residual GANSs to learn how to generate counterfactuals

A
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RSGG-CE AINTUITION)

e Train the generator on graphs of class c (the class to explain)

e Train the discriminator on graphs different from class c and the

synthetic data generated

e Because the generator needs to fool the discriminator, it'll learn to

produce graphs of class not ¢

e Use the oracle to guide the generator in crossing the boundary

A alimlab.org 77




RSGG-CE @ AAAI2024

Saturday 24th as Poster

on Hall A on the Exhibition Level

Sunday 25th as Oral Paper in
Room 217 at 9:30

Robust Stochastic Graph Generator for Counterfactual Explanations

Mario Alfonso Prado-Romero*!, Bardh Prenkaj*?, Giovanni Stilo’

! Gran Sasso Science Institute > Sapienza University of Rome * University of L’ Aquila
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Abstract

Counterfactual Explanation (CE) techniques have garnered
attention as a means to provide insights to the users en-
gaging with Al systems. While extensively researched in
domains such as medical imaging and autonomous vehi-
cles, Graph Counterfactual Explanation (GCE) methods have
been comparatively under-explored. GCEs generate a new
graph similar to the original one, with a different outcome
grounded on the underlying predictive model. Among these
GCE techniques, those rooted in generative mechanisms have
received relatively limited investigation despite demonstrat-
ing impressive accomplishments in other domains, such as
artistic styles and natural language modelling. The prefer-
ence for generative explainers stems from their capacity to
generate counterfactual instances during inference, leverag-
ing autonomously acquired perturbations of the input graph.

Prenkaj et al. 2021, 2020, 2023a; Verma, Mandal, and Gupta
2022; Wang, Yu, and Miao 2017).

Recently, deep learning (relying on GNNs (Scarselli et al.
2008)) has been beneficial in solving graph-based predic-
tion tasks, such as community detection (Wu et al. 2022),
link prediction (Wei et al. 2022), and session-based recom-
mendations (Wu et al. 2019; Xu, Xi, and Wang 2021). De-
spite their remarkable performance, GNNs are black boxes,
making them unsuitable for high-impact and high-risk sce-
narios. The literature has proposed several post-hoc explain-
ability methods to understand what is happening under the
hood of the prediction models. Specifically, counterfactual
explainability is useful to understand how modifications in
the input lead to different outcomes. Similarly, a recent field
in Graph Counterfactual Explainability (GCE) has emerged
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DATASETS AND
EVALUATION METRICS



GRAPH CLASSHICATION DATASETS IN THE WILD

Datasel Domain Publicly Available Repository (Data or Code) Used by
Tree-Cycles [98] synthetic  https://github.com/RexYing/gnn-model-explainer [6, 15, 43, 81]
Tree-Grid [98] synthetic  https://github.com/RexYing/gnn-model-explainer [6, 15, 43]
Tree-Infinity synthetic  https://github.com/MarioTheOne/GRETEL [68]
BA-Shapes [98] synthetic  https://github.com/RexYing/gnn-model-explainer [6, 15, 43, 81]
BA-Community [98]  synthetic  https://github.com/RexYing/gnn-model-explainer [6]
BA-2motifs [44] synthetic  https://github.com/flyingdoog/PGExplainer [6, 81]
ADHD [13] -omics https://github.com/MarioTheOne/GRETEL/tree/main/data/datasets/adhd [1]

ASD [19, 37] -omics https://github.com/MarioTheOne/GRETEL/tree/main/data/datasets/autism/asd [1]

BBBP [50] molecular  https://www.kaggle.com/datasets/mmelahi/cheminformatics?select=bbbp.zip [91]

HIV [20, 24, 70] molecular  https://www.kaggle.com/datasets/mmelahi/cheminformatics?select=hiv.zip [32, 91]
Ogbg-molhiv [31] molecular  https://huggingface.co/datasets/OGB/ogbg-molhiv [45]
Mutagenicity [34] molecular  https://Is11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/Mutagenicity.zip  [6, 32, 81]
NCI1 [87] molecular  https://Is11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/NCI1.zip [6, 32, 81]
TOX21 [35] molecular  https://tripod.nih.gov/tox21/challenge/data.jsp [58]
ESOL [95] molecular  https://github.com/deepchem/deepchem [58, 81]
Proteins [11] molecular  https://chrsmrrs.github.io/datasets/docs/datasets/ [32]
Davis [21] molecular  http://stafl.cs.utu.fi/~aatapa/data/DrugTarget/ [55]
PDBBind [89] molecular  http://www.pdbbind.org.cn/ [55]
CiteSeer [26] social https://lings.org/datasets/ [40, 81]
IMDB-M [96] social https://virginia.app.box.com/s/941v9pwh83lfw5vnwibgcertlsoivg5j [45]
CORA [51] social https://relational.fit.cvut.cz/dataset/CORA [40]
Musae-Facebook [71]  social https://www.kaggle.com/datasets/rozemberczki/musae-facebook-pagepage-network [40]
LastFM [72] social https://github.com/gusye1234/Light GCN-PyTorch/tree/master/data/lastfm [16]

Yelp [90] social https://github.com/gusye1234/Light GCN-PyTorch/tree/master/data/yelp2018/ [16]

Prado-Romero MA, Prenkaj B, Stilo G, Giannotti F. A survey on graph counterfactual explanations: definitions, methods, evaluation. arXiv preprint arXiv:2210.12089. 2022 Oct 21.
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TREECYCLES

(a) (b)

/ N\
/\ -

Ying Z, Bourgeois D, You J, Zitnik M, Leskovec J. Gnnexplainer: Generating explanations for graph neural networks. Advances in neural information processing systems. 2019;32.
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AUTISM SPECTRUM DISORDER (ASD)

Frontal Lobe e Deep Grey Matter
e Insula Cerebellum
e Cingulate e Others
Temporal Lobe @ —— C-Edges (+)
Occipital Lobe -~ C-Edges (-)
e Parietal Lobe O-Edges

f Patient USM_0050453 is classified as ASD (class 1). \
1 If the connection between Putamen_R and Cerebelum_9 R did
not exist and instead the connection between Parietal Inf L and
Cerebelum_Crus2 R existed, then the patient would have been

classified as TD (class 0). j

Abrate C, Bonchi F. Counterfactual graphs for explainable classification of brain networks. InProceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining 2021 Aug 14 (pp. 2495-2504).

A
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BLOOD BARRIER PENETRATION PREDICTION (BBBP)

1,]-dimethylethyl

4-(bis(2-chloroethyl)amino)

benzenebutanoate
C,gH,7CI,NO,

O,
CH
:Q :
CH;
H,C

Martins IF, Teixeira AL, Pinheiro L, Falcao AO. A Bayesian approac

modeling. 2012 Jun 25;52(6):1686-97.

to in silico blood-brain

CH;
CH,
CH, Q¢
&

0 -OH
3-[(3-Hydroxy-2-phenylprop
anoyl)oxy]-8-isopropyl-8-m
ethyl-8-azoniabicyclo[3.2.1]o
ctane bromide
C,H3oBNO,

arrier penetration modeling. Journal of chemical information and

A
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EVALUATION METRICS

Correctness (Validity) i
QG,G") =1[®(G) # &(G')]

We're answering the question: “Can the explainer produce an

instance with a different classification from the original instance?”

A
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EVALUATION METRICS

Graph Edit Distance (GED)

GED G,G/ — min WA\ D
( ) {p1,. ..., }€P(G,G") Z (P:)

We're answering the question: “How similar is the produced

counterfactual candidate w.r.t. original input?”

A
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GED TRICK

Z Z |Ai,j _ Afi,j|
i ]

Just sum the absolute element-wise difference to get the edges that were

changed in the counterfactual w.r.t. the original input

(Works only if we have binary adjacency matrices, and their dimensionalities remain the same)

A
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EVALUATION METRICS

Fidelity

¥(G,G") =1[®(G) = ye| — 1[2(G") = y¢]

We're answering the question: “ How faithful are the explanations

to the oracle considering their correctness?”

A
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LET’S DE-RECONSTRUCT FIDELITY

Fidelity

1{2(G) = yc|

We want the oracle to be correct in predicting the ground truth of

the original instance (aka accuracy)

A
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LET’S DE-RECONSTRUCT FIDELITY

Fidelity

~1(3(G") = e

We don't want the oracle to predict the same class as the ground truth

for the counterfactual candidate

A
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LET’S DE-RECONSTRUCT FIDELITY

Fidelity can have 3 values

e +]1 — both the explainer and oracle are working correctly

e 0&-1 »something is wrong with the explainer or the oracle

When the oracle has perfect accuracy, fidelity is
equal to correctness
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TAKEAWAY LESSONS



SOA PERFORMANCE

Accuracy = 100%

Dataset Method GED | Correctness T Fidelity T . . .
: Naive baseline is better than
RAND@5 92.18 £ 5.44 0.55 £ 0.50 0.55£0.50

RAND@10 123.74+7.43  0.51£0.50 0.51 +0.50 -- --~intensive and complicated

RAND@15 147.93 £+8.26  <0.58 £ 0.50-0.58 + 0.50 generative approach
5.3 DCE 50.36+0.00  1.00+0.00 100+000 -7
S s 5731003 096001 096+001  __---7~
&  DDBS 71.79+£0.24  0.59£0.01 0.59+00r--""
&  MACCS - e =
CLEAR 79.76 £ 3.60  <0.53 + 0.10-0.53 £0.10 __
CF? 31544012 0473010 0.47+0.10 .- -z=»Chance level correctness!
MEG 159.70 £+ 134 <0.53 + 0.00.-6.53 % 0.00

e e P
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SOA PERFORMANCE

Accuracy = 79%

Dataset Method GED | Correctness T Fidelity T

RAND@5 618.06 £8.27  0.00 £ 0.00 0.00 £ 0.00
RAND@10 115293+ 20.19 0.00 £0.00 0.00 £ 0.00
RAND@15 1600.78 £ 18.22  0.00 £ 0.00 0.00 £+ 0.00

DCE 101169+ 0.00 1.00+0.00 0.54 + 0.00

o OBS 9.89+0.11 1.00+0.00 0.54+0.00 - __ . :

<  DDBS 11.79+0.29 1.00+0.00 0.54 + 0.00 \;Generatlve approaches don’t
MACCS - - - .-~ even compare to the baselines
CLEAR 1739.60 + 131.16  0.47 £0.13 0.25+0.18 -
CF2 655.49 + 2.87 0.46 +0.09 0.37 +0.15
MEG X o X
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SOA PERFORMANCE

Accuracy = 86%

Dataset Method GED | Correctness T Fidelity T
RAND@5 3098 £33.27 085x0.35 0.62+0.69
RAND@10 9298 £ 5896 0.86x£0.35 0.65+0.66
RAND@15 8297+ 13737 085x036 0.61%0.69
DCE 27.92+0.12 100000 0.72+0.00
OBS 0.00£ 000 000000 0.61x0.00

o X o uE - S -
2 MACCS 11234008 0402000 0.23 +0.00

—————

CLEAR@1 /’57056 29+ 959, (0387 +0.02. 0.64+0.03
CLEAR@S 2671157i11267" 0.85 + 0.02 ‘062:t003

-
*—_—_—

Cr?— 35,77 2 0.63 oss;ooz 0.63 + 0.03

MEG 269.35+039 051004 032+0.04

Removing the factual graph
can get you good results...

Good correctness but too far
away from the input

7\
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OUR CRITIQUES (SOME)

e Most datasets are toy-like, which don't allow for GNNs (oracles) to be

correctly trained

o See Abrate & Bonchi’s paper: customly written oracle which looks like a

linear separator with fixed slope and y-intercept

e To date, only RSGG-CE can compare against search-based explainers.

Why aren'’t the other works comparing to them as baselines!?

e |et'sdefine a standard evaluation benchmark: correctness, GED, and

fidelity must be included in all future proposals

A

alimlab.org o5




WHAT’S NEXT?



OPEN RESEARCH QUESTIONS

e Are generative counterfactual explainers worth it?

e \What's the difference between counterfactual explanations and
adversarial attacks?

e How sure are we about the generated counterfactuals? Can we
incorporate uncertainty in them?
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OPEN RESEARCH QUESTIONS

e Are the produced counterfactuals actionable? How to incorporate

domain knowledge into the explanation methods?

e How to ensure our explanations methods are stable and robust,

producing similar explanations for similar instances”

e How can we backtrack near the decision boundary once we

overshoot on the other side to produce minimal counterfactuals?

(see next slide)
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Ll -~ o Can we learn the backtracking

steps one-by-one?

Looks like an RL problem now...

O
0 countormetuar () - Care to help us? Work with us
© O - o O then '”'-|i:|' @
0 0 =
. R
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based on ACM survey

Thanks for your attention!

FOR QUESTIONS AND DISCUSSION

WE MEET AT 15:30 IN FRONT OF 121.

https://dl.acm.org/doi/abs/10.1145/3618105
RSVP TO WHOVA
A é 2
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